Comparison of the Catalytic Behaviors of Single Cubane MoFe $_3$ S $_4$ and Fe $_4$ S $_4$ Clusters toward the Multi-electron Reduction of \underline{n} -C $_5$ H $_{11}$ N $_3$

Koji TANAKA, Makoto MORIYA, and Toshio TANAKA*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565

The reduction of \underline{n} - $C_5H_{11}N_3$ by $Na_2S_2O_4$ was investigated in an aqueous Triton X-100 micellar solution containing methylviologen and $[MoFe_3S_4(S-\underline{p}-\underline{n}-C_6H_4C_8H_{17})_3(O_2C_6Cl_4)(Me_2CO)]^{2-}$ (1) or $[Fe_4S_4(S-\underline{p}-\underline{n}-C_6H_4C_8H_{17})_4]^{2-}$ (2). 1 catalyzes the reduction of \underline{n} - $C_5H_{11}N_3$ not only with two electrons but also with six and eight electrons to afford \underline{n} - $C_5H_{11}NH_2$, N_2 , N_2H_4 , and NH_3 , while 2 catalyzes only two electron reduction of \underline{n} - $C_5H_{11}N_3$.

The molybdenum-iron cofactor (MoFe-co) considered as an active center in nitrogenase (N₂ase) may involve a molybdenum-iron-sulfur cluster. The molybdenum atom in the MoFe-co is believed as a binding site to the N₂ase substrates, though no direct evidence that can eliminate the possibility of the iron atom as the active site has been provided so far. The comparison of the catalytic activities between molybdenum and iron atoms toward multi-electron reductions of N₂ase or pseudo-N₂ase substrates may, therefore, be very important in connection with the fact that the reduction of dinitrogen by N₂ase takes place with eight electrons to afford two moles of ammonia and one mole of dihydrogen. This letter reports the reduction of \underline{n} -C₅H₁1N₃ catalyzed by [MoFe₃S₄(S-p- \underline{n} -C₆H₄C₈H₁₇)₃(O₂C₆Cl₄)L]²⁻ (1) (L = Me₂CO, DMF) and [Fe₄S₄(S-p- \underline{n} -C₆H₄C₈H₁₇)₄]²⁻¹⁾ (2) solubilized in aqueous Triton X-100 micellar solutions containing Na₂S₂O₄ and methylviologen dibromide (MVBr₂).

The cyclic voltammogram of a double MoFe $_3$ S $_4$ cubane cluster, (Et $_4$ N) $_4$ [Mo $_2$ Fe $_6$ -S $_8$ (S- $_2$ - $_1$ -C $_6$ H $_4$ C $_8$ H $_1$ 7) $_6$ (O $_2$ C $_6$ Cl $_4$) $_2$] $\stackrel{2)}{\sim}$ (3) in DMF exhibits a pair of cathodic and anodic waves at -1.17 and -1.10 V $_2$ S. SCE, respectively (curve a in Fig. 1), which

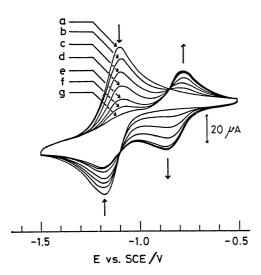


Fig. 1. Cyclic voltammograms of $[Mo_2Fe_6S_8(S-p-n-C_6H_4C_8H_17)_6-(o_2C_6Cl_4)_2]^{4-}$ (3.3 x 10^{-3} mol dm⁻³) in the presence of various amounts of $\underline{n}-C_5H_1N_3$; 0 (a), 0.2 (b), 0.4 (c), 0.6 (d), 1.0 (e), 1.6 (f), and 3.4 x 10^{-3} mol dm⁻³ (g) in anhydrous DMF.

are close to the (2-/3-) redox couple of $[MoFe_3S_4(SPh)_3(O_2C_6Cl_4)(DMF)]^{2-}$ formed by solvent induced bridging bond cleavage of an anlogous double cubane cluster $[Mo_2Fe_6S_8(SPh)_6(O_2C_6Cl_4)_2]^{4-}$ in DMF, 3)

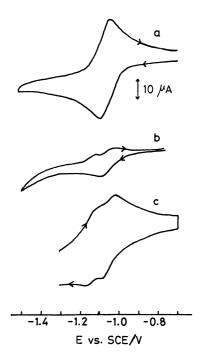


Fig. 2. Cyclic voltammograms of 2 (2.0 x 10⁻⁴ mol dm⁻³) in the absence (a) and the presence (b) of \underline{n} -C₅H₁₁N₃ (3.6 x 10⁻³ mol dm⁻³), and after applying -1.30 V \underline{vs} . SCE to a glassy carbon electrode for 3 min in the presence of \underline{n} -C₅H₁₁N₃ (c) in DMF; sweep rates 100 mV s⁻¹ for (a) and (c), 10 mV s⁻¹ for (b).

suggesting that 3 is also dissociated into two single cubane cluster 1 (L = DMF). The solvent molecule coordinated to the molybdenum atom of [MoFe $_3$ S $_4$ (SR) $_3$ - (0_2 C $_6$ Cl $_4$)L] 2 - (R = alkyl, aryl; L = Me $_2$ CO, MeCN, DMF) is substituted easily by N $_3$ -, N $_2$ H $_4$, CN-, and RNC. 3) In harmony with this, the addition of \underline{n} -C $_5$ H $_1$ N $_3$ to the DMF solution of 1 results in the appearance of a new cathodic and anodic waves at -0.87 and -0.76 V, respectively; the peak currents of these waves increase with increasing the amount of \underline{n} -C $_5$ H $_1$ N $_3$, while those of the original redox couple of 1 are weakened (curves b - g in Fig. 1). Thus, the E $_1$ /2 value ((E $_{pc}$ + E $_{pa}$)/2) of the \underline{n} -C $_5$ H $_1$ N $_3$ adduct formed in the substitution reaction by \underline{n} -C $_5$ H $_1$ N $_3$ for DMF of 1 is shifted anodically by 300 mV compared with that of the DMF adduct, suggesting a decrease of an electron density in the MoFe $_3$ S $_4$ core upon the coordination of \underline{n} -C $_5$ H $_1$ N $_3$ to the molybdenum atom.

On the other hand, the cyclic voltammogram of the \underline{n} -Bu₄N salt of 2 (E_{pc} = -1.08 and E_{pa} = -1.02 V \underline{vs} . SCE) in DMF (Fig. 2a) has not been changed at all even after the addition of about 20 molar excess \underline{n} -C₅H₁₁N₃ to the solution at the sweep rate 100 mV s⁻¹. When the sweep rate is decreased to 10 mV s⁻¹ in the presence of excess \underline{n} -C₅H₁₁N₃, however, a new anodic wave appears at -1.12 V \underline{vs} . SCE as a

Chemistry Letters, 1987

shoulder (Fig. 2b). Moreover, when all the cluster 2 existing on the electrode was reduced to 3- state in the presence of excess \underline{n} - $C_5H_{11}N_3$ by applying -1.30 V to the solution for 3 min, followed by the potential sweep between -1.30 and -0.70 V at 100 mV s⁻¹, a new redox couple appears at E_{pc} = -1.18 and E_{pa} = -1.12 V as shoulders (Fig. 2c). This results suggests that the 3-state of 2 slowly reacts with \underline{n} - $C_5H_{11}N_3$ to form an adduct.

The assumption that the reduced species of 2 can interact with \underline{n} - $C_5H_{11}N_3$ in solution is supported from the electronic absorption spectra of the analogous

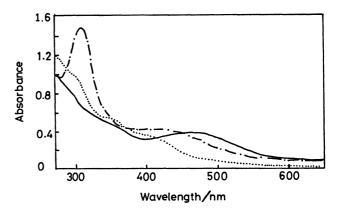


Fig. 3. The electronic absorption spectra of $[\text{Fe}_4\text{S}_4(\text{SPh})_4]^{2-}$ (5.0 x 10⁻⁴ mol dm⁻³) (——), and $[\text{Fe}_4\text{S}_4(\text{SPh})_4]^{3-}$ in the absence (----) and in the presence of $\underline{\text{n}}\text{-C}_5\text{H}_1\text{N}_3$ (-—·—) (5.0 x 10⁻³ mol dm⁻³) in DMF.

reduced cluster with the phenylthiolate ligand $[Fe_4S_4(SPh)_4]^{3-}$ in the presence and the absence of \underline{n} - $C_5H_{11}N_3$; the reduced cluster in the presence of \underline{n} - $C_5H_{11}N_3$ in DMF exhibits an absorption band centered at 306 nm assignable to the PhS anion (a dotted broken line in Fig. 3), which does not appear in the spectrum of the same species in the absence of \underline{n} - $C_5H_{11}N_3$ (a dotted line in Fig. 3), whereas the spectrum of the oxidized species $[Fe_4S_4(SPh)_4]^{2-}$ (a solid line in Fig. 3) has not been changed at all even in the presence of a large excess of \underline{n} -C₅H₁₁N₃. the reoxidation of the reduced species $[Fe_4S_4(SPh)_4]^{3-}$ in DMF containing \underline{n} -C₅H₁₁N₃ at -0.60 V \underline{vs} . SCE for 1 h almost recovered the spectrum of the oxidized species (a solid line in Fig. 3). Such a ligand substitution reaction has been reported for the reduced species of a triply PhS bridged double cubane cluster $[Mo_2Fe_6S_8(SPh)_9]^{3-}$, which afforded the 1:1 adduct with MeN₃ with liberating a Thus the $E_{1/2}$ value of the (2-/3-) redox couple terminal PhS ligand in DMF.4) of 2 is shifted cathodically about by 100 mV upon substitution of a thiolate ligand by \underline{n} - $C_5H_{11}N_3$, suggesting an increase of the electron density of the Fe₄S₄ core upon coordination of \underline{n} - $C_5H_{11}N_3$ to the iron atom.

When an Me₂CO solution of 1 or 2 was added to a stirred aqueous Triton X-100 micellar solution containing \underline{n} -C₅H₁₁N₃ and Na₂S₂O₄, the reduction of \underline{n} -C₅H₁₁N₃ took place to produce an equal amount of \underline{n} -C₅H₁₁NH₂ and N₂ (Eq. 1) (entries 1 and 2 in Table 1). The rates of the reduction catalyzed by 1 and 2 in the presence of methylviologen dibromide (MVBr₂) in the reaction mixture were increased by about 20 and 50 times faster than those in the absence of MVBr₂, respectively. In addition, the reduction catalyzed by 1 afforded considerable amounts of N₂H₄ (Eq. 2) and NH₃ (Eq. 3) as well as N₂ and \underline{n} -C₅H₁₁NH₂ (entry 3 in Table 1).⁵⁾ A decrease in the rate of reduction when DMF was used in place of Me₂CO as a solvent for solubilization of 1 into a micelle (entry 4 in Table 1) may be resulted from a strong coordination ability of DMF to the molybdenum atom of the MoFe₃S₄ core compared with that of Me₂CO. On the other hand, the reduction of \underline{n} -C₅H₁₁N₃

376 Chemistry Letters, 1987

Table 1. Reduction of \underline{n} -C₅H₁₁N₃ (2.0 x 10⁻² mol dm⁻³) in aqueous Triton X-100 micellar solutions (pH 6.0) containing $\underline{1}$ and $\underline{2}$ (2.0 x 10⁻⁴ mol dm⁻³) and Na₂S₂O₄ (8.0 x 10⁻² mol dm⁻³) in the absence and the presence of MVBr₂ at 30 °C for 1 h

Entry	Cluster	Solvent for Solubilization	mol dm ⁻³	Product mol/Cluster mol			
				N ₂	<u>n</u> -C ₅ H ₁₁ NH ₂	N ₂ H ₄	NH ₃
1	1	(CH ₃) ₂ CO	0	5.4	5.6	0	0
2	2	(CH ₃) ₂ CO	0	1.1	1.4	0	0
3	1	(CH ₃) ₂ CO	2.0×10^{-4}	90.1	75.0	0.5	20.3
4	~ 1	DMF	2.0×10^{-4}	41.8	50.5	0.5	12.4
5	2	(CH ₃) ₂ CO	2.0×10^{-4}	16.8	16.1	0	0

$$C_{5}H_{11}N_{3}$$
 + $2e^{-}$ + $2H^{+}$ \longrightarrow $C_{5}H_{11}NH_{2}$ + N_{2} (1)
 $C_{5}H_{11}N_{3}$ + $6e^{-}$ + $6H^{+}$ \longrightarrow $C_{5}H_{11}NH_{2}$ + $N_{2}H_{4}$ (2)
 $C_{5}H_{11}N_{3}$ + $8e^{-}$ + $8H^{+}$ \longrightarrow $C_{5}H_{11}NH_{2}$ + $2NH_{3}$ (3)

catalyzed by 2 produced only $\underline{n}\text{-}C_5H_{11}NH_2$ and N_2 even in the presence of MV^{2+} (entry 5 in Table 1).

Thus, 1 is superior to 2 as the catalyst of the N₂ase model reactions since neither six- nor eight-electron reduction of \underline{n} -C₅H₁₁N₃ takes place on the iron atom under the present experimental conditions. A striking difference between 1 and 2 toward the reduction of \underline{n} -C₅H₁₁N₃ may be associated with the fact that \underline{n} -C₅H₁₁N₃ acts as an electron acceptor and donor to the molybdenum atom of the MoFe₃S₄ core and the iron atom of the Fe₄S₄ core, respectively. The present study is the first experimental support for the view that molybdenum of the MoFeco may be the active site of N₂ase reactions.

References

- 1) K. Tanaka, M. Masanaga, and T. Tanaka, J. Am. Chem. Soc., <u>108</u>, 5448 (1986); K. Tanaka, M. Moriya, and T. Tanaka, Inorg. Chem., <u>25</u>, 835 (1986).
- 2) The cluster was prepared according to the procedure described in Ref. 3 and the analytical values were in good agreement with the calculated ones.
- 3) R. E. Palermo, R. Singh, J. K. Bashkin, and R. H. Holm, J. Am. Chem. Soc., 106, 2600 (1984).
- 4) S. Kuwabata, K. Tanaka, and T. Tanaka, Inorg. Chem., <u>25</u>, 1691 (1986).
- 5) The disagreement between the amount of \underline{n} - $C_5H_{11}NH_2$ and the total amounts of N_2 , N_2H_4 , and NH_3 formed in the reduction catalyzed by $\underline{1}$ in the presence of MV^{2+} (entry 3 in Table 1) results from the reaction of \underline{n} - $C_5H_{11}NH_2$ with Me_2CO .

(Received November 19, 1986)